467 research outputs found

    Does the detection of X-ray emission from SN1998bw support its association with GRB980425?

    Full text link
    We show that the recent identification of X-ray emission from SN1998bw is naturally explained as synchrotron emission from a shock driven into the wind surrounding the progenitor by a mildly relativistic shell ejected by the supernova, the existence of which was inferred earlier from radio observations. X-ray observations imply a shell energy E~10^{49.7}erg, and constrain the initial shell velocity \beta*c and normalized wind mass loss rate, \dot{m}=(\dot{M}/10^{-5}M_sun/yr)/(v_w/10^3 km/s), to satisfy \beta^3*\dot{m}~10^{-1.5}. The inferred energy is consistent with energy estimates based on radio observations provided \dot{m}~0.04, in which case radio observations imply \beta~0.8, consistent with the X-ray constraint \beta^3*\dot{m}~10^{-1.5}. While X-ray observations allow to determine the parameters characterizing the pre-explosion wind and the mildly relativistic shell ejected by SN1998bw, they do not provide evidence for existence of an off-axis "standard" GRB jet associated with SN1998bw, that may have produced GRB980425. However, as recently pointed out in (astro-ph/0310320), the lack of observational signatures typically expected to be produced by such an off-axis jet on a 1yr time scale, may be due to a low \dot{m}<0.1, which implies that an off-axis jet will become observable only on >10yr time scale.Comment: Minor changes. Accepted to ApJ

    Measurements at the southern magnetic conju- gate region of the fission debris from the starfish nuclear detonation

    Get PDF
    Measurement of fission products from Star Fish high-altitude nuclear explosion with recording gamma-ray spectromete

    Gamma-burst emission from neutron-star accretion

    Get PDF
    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required

    A Systematic Analysis of Supernova Light in Gamma-Ray Burst Afterglows

    Get PDF
    We systematically reanalyzed all Gamma-Ray Burst (GRB) afterglow data published through the end of 2002, in an attempt to detect the predicted supernova light component and to gain statistical insight on its phenomenological properties. We fit the observed photometric light curves as the sum of an afterglow, an underlying host galaxy, and a supernova component. The latter is modeled using published multi-color light curves of SN 1998bw as a template. The total sample of afterglows with established redshifts contains 21 bursts (GRB 970228 - GRB 021211). For nine of these GRBs a weak supernova excess (scaled to SN 1998bw) was found, what makes this to one of the first samples of high-z core collapse supernovae. Among this sample are all bursts with redshifts less than ~0.7. These results strongly support the notion that in fact all afterglows of long-duration GRBs contain light from an associated supernova. A statistics of the physical parameters of these GRB-supernovae shows that SN 1998bw was at the bright end of its class, while it was not special with respect to its light curve shape. Finally, we have searched for a potential correlation of the supernova luminosities with the properties of the corresponding bursts and optical afterglows, but we have not found such a relation.Comment: 25 pages, 7 figures, accepted by ApJ; revised, shortened and updated compared to version 1; Title slightly changed; all figures showing individual afterglow light curves removed, as advised by the referee; conclusions unchange

    The difficulty of ultraviolet emssion from supernovae

    Get PDF
    There are certain conceptual difficulties in the theory of the generation of ultraviolet radiation which is presumed for the creation of the optical fluorescence mechanism of supernova light emission and ionization of a nebula as large as the Gum nebula. Requirements concerning the energy distribution of the ultraviolet photons are: 1) The energy of the greater part of the photons must be sufficient to cause both helium fluorescence and hydrogen ionization. 2) If the photons are emitted in an approximate black body spectrum, the fraction of energy emitted in the optical must be no more than what is already observed. Ultraviolet black body emission depends primarily on the energy source. The probability that the wide mixture of elements present in the interstellar medium and supernova ejecta results in an emission localized in a limited region with less than 0.001 emission in the visible, for either ionization or fluorescence ultraviolet, is remote. Therefore transparent emission must be excluded as unlikely, and black body or at least quasi-black-body emission is more probable

    The nature of GRB980425 and the search for off-axis GRB signatures in nearby type Ib/c supernovae emission

    Full text link
    The identification of type Ib/c supernovae as GRB progenitors is motivated by the association of GRB980425 with SN1998bw and of GRB030329 with SN2003dh. While the gamma-ray luminosity of GRB030329 was typical to cosmological GRBs, the luminosity of the nearby (40 Mpc) GRB980425 was ~5 orders of magnitude lower. The large luminosity difference is commonly explained by hypothesizing that either SNe Ib/c produce two different classes of GRBs, or that GRB980425 was a typical cosmological GRB jet viewed off-axis. In the latter scenario, strong radio emission, ~10^{30} erg/s Hz, is expected at ~1 yr delay due to jet deceleration to sub-relativistic speed, as observed from GRB970508. The radio luminosity of SN1998bw was 3 orders of magnitude lower than this value. We show that the low radio flux may be consistent with the off-axis jet interpretation, if the density of the wind surrounding the progenitor is lower than typically expected, \dot{m}=(\dot{M}/10^{-5} M_sun/yr)/(v/10^3 km/s)~0.1 instead of \dot{m}>=1. The lower value of \dot{m} is consistent with the observed radio emission from the supernova shock driven into the wind. This interpretation predicts transition to sub-relativistic expansion at ~10 yr delay, with current \~1 mJy 10GHz flux and m_V~23 optical flux, and with ~10 mas angular source size. It also implies that in order to search for the signature of off-axis GRBs associated with nearby Ib/c supernovae, follow up observations should be carried on a multi-yr time scale.Comment: 13 pages, 1 figure; 2 references added; ApJ, in pres

    Iron Opacity and the Pulsar of Supernova 1987A

    Full text link
    Neutron stars formed in Type II supernovae are likely to be initially obscured by late-time fallback. Although much of the late-time fallback is quickly accreted via neutrino cooling, some material remains on the neutron star, forming an atmosphere which slowly accretes through photon emission. In this paper, we derive structure equations of the fallback atmosphere and present results of one-dimensional simulations of that fallback. The atmosphere remaining after neutrino cooling becomes unimportant (less than the Compton Eddington limit) is only a fraction of the total mass accreted (10^-8 of the accreted mass or 10^-9 solar masses.) Recombined iron dominates the opacity in the outer regions leading to an opacity 1000-10,000 times higher than that of electron scattering alone. The resultant photon emission of the remnant atmosphere is limited to 1/1000th the Compton Eddington Luminosity. The late-time evolution of this system leads to the formation of a photon-driven wind from the accretion of the inner portion of the atmosphere, leaving, for most cases, a bare neutron star on timescales shorter than a year. The degenerate remnant of 1987a may not be a black hole. Instead, the fallback material may have already accreted or blown off in the accretion-driven wind. If the neutron star has either a low magnetic field or a low rotational spin frequency, we would not expect to see the neutron star remnant of 1987a.Comment: 15 pages text + 8 figures, accepted by Ap
    corecore